How can we enhance human health by improving the nutritional value of rice?

Shannon R.M. Pinson

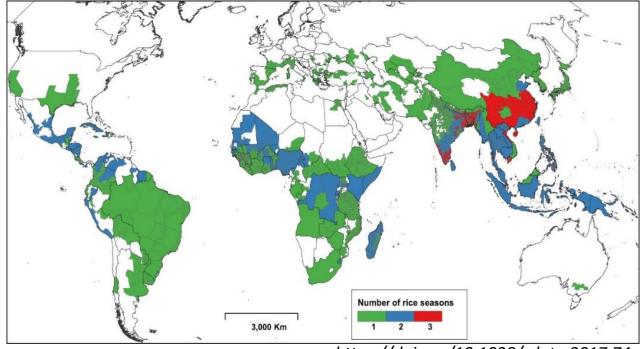
USDA Rice Crop Geneticist, Dale Bumpers National Rice Research Center, Stuttgart, AR

Fiber

Vitamins

Minerals

Protein


Phytic Acid – reduce it

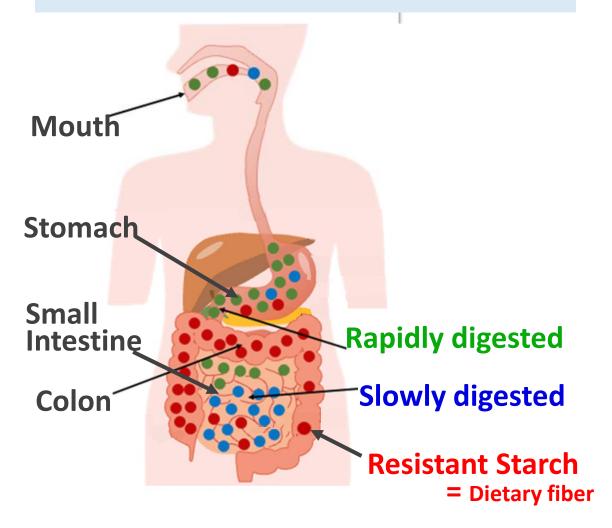
Antioxidants

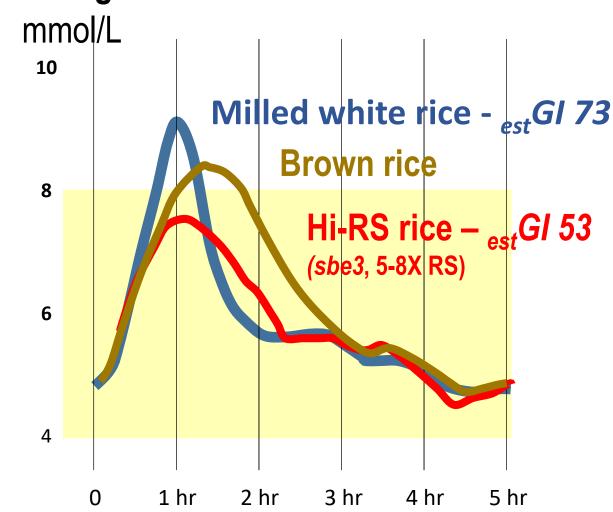
Why Rice?

Staple food for > half the world's population

 Critical to food security in many low-income countries throughout Asia, Africa & Latin America

https://doi.org/10.1038/sdata.2017.74





RESISTANT STARCH (RS): 0 calories, GI = 0, & is <u>dietary fiber</u>

RS resists digestion in the healthy human stomach + small intestine

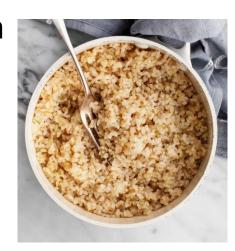
RS and _{est}GI from Pinson unpublished

Types & Forms of Rice Marketed:

Long grain Rice = "dry & fluffy"

Amylose: 20-24% (intermed.)

≈ **75**% US consumption, 2022


Medium/Short grain

"sticky rice", Asian rice Amylose: Low, 11-19% ≈ 25% US consumption, 2022

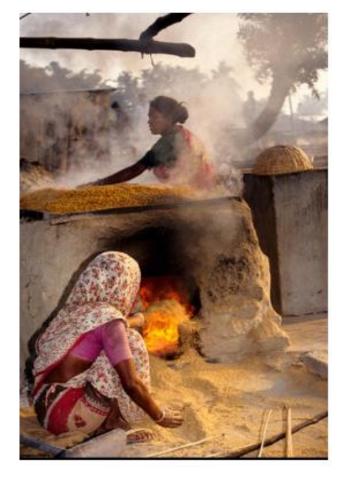
Brown Rice = whole grain

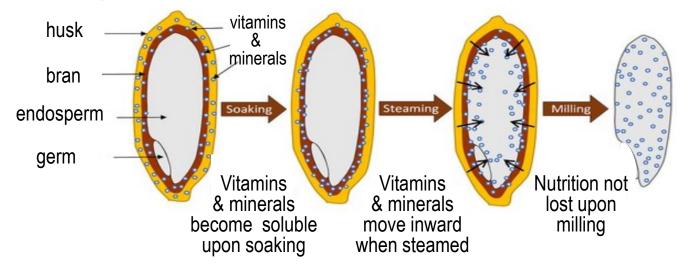
Firmer, dryer texture
7X fiber! & > minerals, vitamins,
fats, & protein
Rancidity & long cooking time
≈ 3% US consumption, 2022

Parboiled, "converted"

Pre-steamed then milled
Firm, separated cooked kernels
> minerals & vitamins, slight > fiber
Traditional in S. Asia & W. Africa
≈ 57% US consumption, 2022

Parboiling reduces breakage during milling


Milling rice by pounding In mortar & pestle


Parboiling: soak, steam, & dry before milling the rice

 $Photos: https://www.facebook.com/photo.php?fbid=444164469737174\&id=372463356907286\&set=a.374818566671765\&locale=ru_RU; newrathnarice.com/technology.html$

Parboiling retains minerals & vitamins

Contributed to the 1926 Discovery of Thiamine (Vit. B1)


- Beriberi, deadly neurological disease, became epidemic in the Dutch East Indies (Indonesia) in the 1850's
- A Dutch military Dr. (Dr. Eijkman), presuming microbial disease, injected microbes isolated from beriberi victims into chickens
- Control group exhibited leg paralysis from beriberi just as fast as the injected chickens.
- Rep. 2: all chickens again developed leg paralysis, but then all recovered!
- Were fed cooked white rice leftover from the hospital, when ran out, switched to uncooked brown rice
- Further study ruled out microbes in cooked rice
- 2nd Dutch military Dr. (Dr. Grinjs) realized beriberi NOT common in Dutch colonies in W. Africa, where milled parboiled rice is the staple
- Thiamine (Vitamin B1) was discovered by team of Dutch scientists in 1926

Nutrition in ½-cup cooked rice (1 US serving)

		White	Parboil	Brown	
Energy	kCal % DV 2000	112 6	114 6	116 6	
Vitamins %DV	A β-carotene	0	0	0	HarvestPlus, GMO Daffodil + bacterial genes
	B1, Thiamine	2	6	14	
	B2, Riboflavin	1	2	2	
	B3, Niacin	3	9	13	
	B5	6	6	7	
	B6	3	8	9	
	B7	6	9	12	
	B9, Folate	1	1	2	
	B12	0	0	0	Meats, dairy, eggs
	С	0	0	0	Fruits

Golden Rice, GMO

β-Carotene

GMO rice approved in the Philippines 2021

EU now allows Gene Editing ≤ 20 DNA bases

Data compiled from: food package labels, nutrivore.com, www.nutritionvalue.org, www.healthline.com

Nutrition in $\frac{1}{2}$ -cup cooked rice (1 US serving)

		White	Parboil	Brown	
Energy	%DV 2000	6	6	6	
Protein	DV = 50g	5	5	6	1.5X proprietary mutant, low in lysine
Fiber	DV = 28g	1	2	7	High Amylose (2x) Public <i>sbe3</i> gene (7-8X)
Minerals	Copper	8	10	10	
	Manganese	15	16	38	
	Selenium	9	10	10	
	Iron	1	1	2	HarvestPlus (Gates \$)
	Zinc	3	2	6	HarvestPlus
	Calcium	1	2	7	
	Magnesium	2	4	9	3-4X with genes on chr 2 & 7
	Phosphorus	3	6	8	(Pinson unpublished)
	Potassium	1	2	2	bioaccessibility?

Data compiled from: food package labels, nutrivore.com, www.nutritionvalue.org, www.healthline.com, parishrice.com

Phytic acid reduces protein & mineral bioaccessibility

- PA binds to proteins, Vitamin D, Ca, Fe, Zn, Mg, K, & Mn; reducing their absorption
- Ex: consuming 5-10 mg of PA reduces Fe absorption by 50%
- 10-25% of brown rice PA is retained after milling; 10-25 mg PA in ½-cup cooked milled rice
- PA especially concerning in diets low in meat and animal products (e.g., vegans, & impoverished)
- Double Damage in animal feed
 - reduces nutritional efficiency
 - > excess P in waste (e.g., triggers red algae blooms in the Gulf of Mexico)
 - feed in USA now supplemented with phytase to break down PA
- Soaking 4-12 hrs reduces PA by activating endogenous phytases; standard for dry beans
- Low PA rice public ARS-created mutant (Bryant et al. 2005, DOI: 10.1094 / CC-82-0517)
 - PA reduced by 45% AND 5-10X > in free-P in endosperm
 - germination and seedling vigor not notably depressed

Antioxidants in Color-bran Rice

- Reduce inflammation (diabetes) & cancer
- Novelty > "brown" rice consumption
- "Emperor rice" in Asia
- Inhibits amylase slows starch digestion

		DPPH dry	Antioxidant active	/ity
		μg/100g	ounce-for-ounce	
		(Pinson unpub)	cooked rice vs fr	esh blueberries (wet wt)
Standard brown rice		75	1/10	
Red rice (tanr	nins <i>, Rd</i>)	345	1/2	
Purple rice (antho	cyanins, Pb)	235	1/3	
MNSN1 selections (Rd+Pb)		720	= blueberries!	(Pinson et al., unpublished)

Blueberry

1640

(Rodrigues et al. 2011 doi:10.1590/S0101-20612011000400013)

How can we enhance human health by improving the nutritional value of rice?

Fiber – breed, Resistant Starch *sbe3* gene is publicly available reduces _{est}GI from 73 to 53, cooked rice is quite firm – acceptability concerns

Vitamins - Brown rice, Parboiling, Gene editing

Minerals - recently mapped P+Mg+K genes to chr 2&7, 3-4X increases

Protein - proprietary 1.5X mutant, still low in lysine; mutation breeding

Phytic Acid reduction - public (ARS) *lpa* mutation

Antioxidants - Red + Purple combined = even more antioxidants

- can increase acceptance of brown rice, & < GI